

Estimation of CO₂ Emission Reduction Potential in Major Countries in 2020 and 2030

Yasushi Ninomiya, PhD Senior Researcher The Institute of Energy Economics Japan (IEEJ)

> 18 November 2013 COP19 Side event at Warsaw

Objectives

- ["] To estimate CO₂ emission reduction potential in 2020 and 2030 with simplified methodologies</sup>
 - . for 5 major energy sectors (industry, power, transportation and domestic & commercial sectors)
 - . in 9 major countries (US, EU27, China, Japan, India, Indonesia, South Africa, Brazil and Russia)
 - . assuming that advanced technologies will be spread out in the major countries by 2030
- To show the possible impacts of diffusion of the advanced technologies in the major countries under a new framework in which major countries have their nationally determined commitments

Background

- Under the future climate regime, nationally determined commitment of each individual country can be a key element
- % Sechnology+plays absolutely an essential role under the regime
- *The likely scenario under the future climate regime is:*
 - . Each individual country makes an effort to increase the use of the advanced technologies as much as possible under the nationally determined commitments

Methodology

- Simplified methodology, rather than complicated model
- Why simplified?...
 - . Easy to be understood/re-caluculated/traced compared/modified by anyone without specialised knowledge
 - . Lesser requirement for detailed/expensive data set (which is often unavailable for developing countries)
 - Allowing many countries to estimate their CO₂ emission reductions potential as a common ground of understanding

Data

- Employ the data such that:
 - . Reliable (e.g. authorised by government/ governmental agency and published by established research instituteõ)
 - . Publically available in the world (e.g. UN, IEA, IMF, OECD dataõ)
- "Use uniformed predicted values for macro economic indicators such as GDP and population in 2020/2030 across the all sectors to ensure consistency

Sectors

- Industrial sector
 - . Iron & Steel
 - . Cement
- *Transportation sector*
 - . Passenger vehicle
- " Power sector
 - . Thermal power plants (coal and gas)
- " Domestic & commercial sector
 - . Electric appliances
 - ["] Refrigerator
 - " Air conditioner
 - ″ Lighting

Estimated CO₂ emission reduction potential in 2020 and 2030: Summary Table $(Mt-CO_2 p.a.)$

South **EU27** US China India Brazil Russia **Total** Japan Indonesia Africa 2020 4.5 546.8 8.6 17.3 8.7 388.1 94.3 NA 7.1 18.2 Iron & Steel 2030 8.4 20.4 10.2 407.6 134.9 6.5 9.1 22.0 619.1 NA 2020 1.9 9.3 7.9 123.4 1.7 3.5 13.6 NA NA 161.3 Cement 2030 1.9 9.4 9.4 108.4 20.4 NA NA 2.1 3.9 155.5 2020 1,842.3 27.8 190.9 262.4 638.4 483.9 61.9 45.3 17.0 114.7 Power 2030 56.7 185.7 427.4 1,739.6 60.7 4,005.4 1,156.4 121.8 24.8 232.3 2020 46.4 399.1 446.8 97.2 8.4 7.3 8.5 53.1 64.2 1,131.0 Transport 2030 45.4 410.1 489.9 173.6 12 9.9 12.2 75.5 74.4 1,303.0 2020 2.5 6.2 16.1 17.0 2.6 1.2 0.4 8.4 1.1 55.7 **Domestic** 2030 3.5 8.5 37.1 6.7 2.2 22.2 21.6 0.9 1.5 104.1 2020 87.2 622.8 741.9 1264.1 608.6 71.8 59.5 79.3 201.7 3,737.1 **Total** 2030 115.9 959.1 2466.3 634.1 1345.3 138.4 81.6 334.1 6,187.1 112.4

Estimated CO₂

Estimated CO₂

Estimated CO₂ emission reduction potential in 2020 and 2030: Iron & steel sector

["] The estimated CO₂ emission reduction in this sector in 2030 is equivalent to around 40% of the 2010 emissions level</sup>

Iron & steel sector: Methodology and data

%GO₂ emission reduction potential in 2030+=
 %GO₂ reduction potential per unit of production with the 2010 BAT (t-CO2/t steel)+x
 %Dredicted emount of enougl steel productions in 2020 reductions.

% Redicted amount of annual steel productions in 2030+

- % O₂ reduction potential per unit of production with the 2010 (t-CO₂/t steel)+is based on % Energy savings potential% (GJ/t steel) in % EA-ETP 2012+(IEA 2012)
- % Bredicted amounts of annual steel productions in 2020 and 2030+ are taken on production growth rates for low demand scenario in % EA-ETP2012+(IEA, *ibid*.)

Estimated CO₂ emission reduction potential in 2020 and 2030: Cement sector

["] The estimated CO₂ emission reduction in this sector in 2030 is equivalent to around 20% of the 2010 emissions level</sup>

Cement sector: Methodology and data

- $\%O_2$ emissions reduction potential in 2030+= $\%O_2$ reduction potential per unit of production with the 2010 BAT (t-CO2/t cement)+ x %redicted amount of annual cement productions in 2030+
- % O₂ reduction potential per unit of production with the 2010 BAT (t-CO₂/ t cement)+is based on % Energy savings potential% (GJ/t cement) in % EA-ETP 2012+(IEA 2012)
- % Redicted amounts of annual cement productions in 2020 and 2030+are taken on production growth rates for high demand scenario in % EA-ETP2012+(IEA, *ibid*.)

Estimated CO₂ emission reduction potential in 2020 and 2030: Transportation sector

The estimated CO2 emission reductions in this sector in 2020 and 2030 are equivalent to around 35% and 40% of the 2010 emissions level respectively

Transportation sector: Methodology and data

- % O₂ emissions reduction potential in 2030+=
 {(% Redicted number of passenger vehicles in 2030+x
 % Redicted distance travelled in 2030+) x
 (% Redicted fuel efficiency in 2030+. % Luel efficiency in
 2010+) x % Emission factor for petrol+
- % Suel efficiency in 2010+is assumed as BAU taken from GFEIG theoretical fuel efficiency for new passenger vehicles in 2005
- % Redicted fuel efficiency in 2030+is equivalent to that of hybrid car (e.g. Toyota Prius 1.8) in 2010
- % Redicted distance travelled in 2030+is based on IEAcs Sustainable Mobility Project (SMP) Model

Predicted number of passenger vehicles in 2020 and 2030: Logistic function

Estimated CO₂ emission reduction potential in 2020 and 2030: Power sector

["] The largest CO₂ emission reduction of 4 billion t-CO₂ p.a. in 2030 is estimated in this sector

Power sector: Methodology and data

% O₂ emissions reduction potential in 2030+= {(Input ₂₀₁₀ / Power₂₀₁₀ x Power₂₀₃₀). [Input₂₀₁₀ /(Power₂₀₁₀(1-R) + Input₂₀₁₀ x BAT x R) x Power₂₀₃₀]} x EF

where:

Input₂₀₁₀ = Gas/coal used for electricity generation in 2010

Power₂₀₁₀ = Electricity generated by gas/coal in 2010

Power₂₀₃₀ = Predicted value for power generated by gas/coal in 2030

R = Replacement rate of existing capacity by BAT (CCGT/USC) in 2030 (Assuming 0.333 for 2020, 0.666 for 2030 with ‰0 years lifetime+) BAT = 0.593 for gas (CCGT) or 0.476 for coal (USC)

EF = Emission factor for gas/coal

Estimated CO₂ emission reduction potential in 2020 and 2030: Domestic and commercial sectors

- " Enormous reduction potentials are estimated in lighting over the world
- "Room AC and fridge have also large potential in developing countries

Domestic and commercial sector: Methodology and data

% O₂ emissions reduction potential in 2030+= % Redicted demand for Room AC/refrigerator/lighting in 2030+x

%Efficiency level in 2010. Efficiency level in 2030)+x %Grid emission factor+

- % Redicted demand for AC/refrigerator/lighting in 2030+is estimated based on the predicted GDP growth rates taken from WEO2012
- % Substituting for a constraint of the sector of the se
- "BAU for lighting: CFL diffusion rates are assumed to be 75% in 2020 and 100% in 2030

Conclusions

- [%] Substantial amounts of CO₂ emission reduction potential in 2020 and 2030 are estimated (around 3,700 Mill.t-CO₂ p.a. in 2020 and 6,000 Mill.t-CO₂ p.a. in 2030)
- The largest reduction potential is seen in the power sector being accounted for 65% of the total reduction in 2030 followed by the transportation sector of 22% of the total
- The methodology and the data employed in this study can be further improved via international cooperation

Issues for further consideration

- Adequacy of BAU assumptions
 - . Technological level at 2010 remains constant up to 2030?
- Adequacy of BAT assumptions
 - . The 2010 BAT can be spread over in 2020/2030?
 - . No progress made for BAT after 2020?
 - . 1/3 of the existing power plants are replaced by BAT within 10 years due to % years lifetime+?
- " Expansion of covered sectors and countries
- Policies and measures as well as financial arrangement to realise the potential of the emission reduction

Contact for further information: yasushi.ninomiya@tky.ieej.or.jp

Annex: Detailed information on the estimation and data used for each sector

Iron & steel sector

Data source:

1. Energy Saving Potential for production	t-CO2	International Energy Agency, Energy Technology Perspectives 2012
2. Production (Actual and Outlook)	t-steel	EU27, US, China, India, South Africa, Brazil, Russia: IEA-ETP2012 Low demand scenario is used for actual and outlook production.
		Japan: 2010 Actual : World Steel "Steel statistical yearbook‰ 2011-2030: The steel production growth rate for OECD Asia Oceania of IEA-ETP2012 is multiplied by actual production data of 2010.
	t-cement	EU27, US, China, India, South Africa, Brazil, Russia: IEA-ETP2012 Low demand scenario is used for actual and outlook production
		Japan: 2010 Actual : USGS "Minerals Information" 2011-2030: The cement production growth rate for OECD Asia Oceania of IEA-ETP2012 is multiplied by actual production data of 2010.

Iron & steel sector

Reduction potential intensity and predicted amount of production

CO2 reduction potential per unit of production with the 2010 BAT (t-CO2/t-steel)

Predicted Iron and Steel Production (thousand tons)

Technology and deployment milestones

Technology	Research and development needs	Demonstration needs	Deployment milestones
Smelting reduction	Improve heat exchange in FINEX. New configuration of HIsmelt to lower coal	Demonstration plants are already operational for FINEX and HIsmelt.	Share of crude steel production from smelting reduction rises to between 128 Mt and 237 M
	consumption.	Demonstration plant for producing reduced iron oxide	in 2050.
	Integrate Hismelt and Isarna processes	pellets is operational by 2015.	
	(Hisarna). Pair straight hearth furnaces.	Demonstration plant with smelter is operational by 2020.	
Top-gas	Trial of existing experimental furnace was	Commercial-scale demonstration of a small blast	Deploys in 2020.
recycling blast furnace	successful.	furnace is operational by 2014.	Contributes to a 20% decrease in coke needs
		Full-scale demonstration plant is operational by 2016.	by 2050.
Use of highly reactive materials	Development of innovative agglomerate to lower reducing agent in blast furnaces.	Demonstration plants already operational for ferro-coke.	Deployment after 2020.
Use of charcoal and	Proven technologies are available.		Between 1.8 EJ and 3.3 EJ of charcoal and
waste plastic Focus research on improving the mechani stability of charcoal.			waste plastic is used globally in 2050.
Production of iron by	Assess technical feasibility and optimum	If the laboratory-scale project is successful,	Deploys after 2030.
molten oxide electrolysis	operating parameters.	demonstration starts in the next 10 to 15 years.	Reaches marginal market share by 2050.
Hydrogen smelting	Assess technical feasibility and optimum operating parameters.	If the laboratory-scale project is successful, demonstration starts in the next 15 to 20 years.	Deploys after 2040.
			Reaches marginal market share by 2050.
CCS for blast furnaces	Focus research on reducing the energy used in capture.	Demonstration plant already operational.	Equip 75% to 90% of all new plants built between 2030 and 2050 with CCS.
			Equip 50% to 80% of refurbished plants between 2030 and 2050 with CCS.
CCS for DRI		2015-20	Equip 75% to 90% of all new plants built between 2030 and 2050 with CCS.
			Equip 50% to 80% of refurbished plants between 2030 and 2050 with CCS.
CCS for smelting reduction		2020-30	Equip 75% to 90% of all new plants built between 2030 and 2050 with CCS.
			Equip 50% to 80% of refurbished plants 26

in a series of fluidised bed reactors

in a series of fluidised bed reactors. Hismeti (high-intensity smetting) is an iron bath reactor process. Isama is a smetting-reduction technology under development by the Ultra-Low CO₂ Steelmaking (ULCOS) consortium. It is a highly energy efficient iron-making process based on direct smelting of iron-ore fines, using a smetting-cyclone in combination with a coal-based smetter. All process steps are directly hot-coupled, avoiding energy losses from intermediate treatment of materials and process gases.

Cement sector

Reduction potential intensity and predicted amount of production

Predicted cement Production (thousand tons)

Technology and deployment milestones

Table 12.5	Main technology options for the cement sector for the 2DS					
Technology	Research and development needs	Demonstration needs	Deployment milestones			
Energy efficiency and shift to BATs	Ongoing further improvements of BAT. Fluidised bed technology.		Phase-out of inefficient wet kilns in small cement plants. International standard for new kilns.			
Alternative fuels	Ongoing identification and classification of suitable alternative fuels.		Global shares increase from 4% in 2010 to about 30% in 2050.			
Clinker substitutes	Analyse substitution material properties and evaluate regional availability.		Global average clinker-to-cement ratio to reach between 0.66 and 0.67 by			
	Develop and implement international standards for blended cements.		2050.			
CCS post-combustion	Pilot plant needed by 2013.	2015-20	About 50% to 70% of all new large			
CCS oxy-fuelling	Gas cleaning.	2020-30	plants and 30% to 45% of retrofitted plants equipped with CCS by 2050.			

Transportation sector

	Fuel	2010		BAT	2020		BAT	2030	
	Efficiency	Mileage	CO2 Coef	Efficiency	Vehicle	CO2	Efficiency	Vehicle	CO2
	l/100Km	km∕ car	co2-t/kl	l/100Km	Ownership	Reduction	l/100Km	Ownership	Reduction
	(GFEI)	(SMP/IEA)		(Prius1.8)	thousand	Mt-CO2	(Prius1.8)	thousand	Mt-CO2
Japan	6.7	8,938	2.32166	3.1	61,603	46.4	3.1	60,197	45.4
EU27	7.0	12,500	2.32166	3.1	349,702	399.1	3.1	359,343	410.1
US	9.7	17,600	2.32166	3.1	164,851	446.8	3.1	180,749	489.9
China	7.7	10,000	2.32166	3.1	90,371	97.2	3.1	161,395	173.6
India	5.6	8,000	2.32166	3.1	17,780	8.4	3.1	24,715	11.6
Indonesia	7.2	10,000	2.32166	3.1	7,572	7.3	3.1	10,278	9.9
S. Africa	7.7	10,000	2.32166	3.1	7,867	8.5	3.1	11,311	12.2
Brazil	7.3	12,000	2.32166	3.1	45,059	53.1	3.1	64,041	75.5
Russia	8.3	13000	2.32166	3.1	40,672	64.2	3.1	47,080	74.4
Total					785,475	1,131		919,111	1,302

JAPAN

Transportation sector

	Have Fuel	Improvments	s under Fi	Fuel Econon	ny of BAU	CO ₂ Reduction	Potential	Compared w	ith Fixed
	Economy	Economy St	andards (l/100Km		Mt-CO2		BAU Reduct	ion (%)
	Standards	2020	2030	2020	2030	2020	2030	2020	2030
Japan	Yes	12%	24%	5.9	5.1	36	26	78%	57%
EU27	Yes	14%	27%	6.1	5.1	303	213	76%	52%
US	Yes	20%	40%	7.8	5.8	316	203	71%	42%
China	Yes	19%	38%	6.2	4.8	67	64	68%	37%
India	Scheduled	16%	32%	4.7	3.8	5	3	64%	29%
Indonesia	No	16%	32%	6.0	4.9	5	4	72%	44%
S. Africa	Scheduled	16%	32%	6.5	5.2	6	6	73%	47%
Brazil	No	16%	32%	6.1	5.0	38	34	72%	45%
Russia	No	16%	32%	7.0	5.6	48	36	75%	49%

Power Sector

Details of formula and assumptions	Data	Data sources
 Power generation efficiency by fuel Power generation efficiency of existing facilities = Electricity generated by gas or coal / Electricity generated by gas or coal with CHP adjustment* *Power generation efficiency lowered in CHP plant due to simultaneous supply of heat 	power generated, fuel input, CO2 emissions CHP adjustment value	 IEA Energy Balances, IEA CO2 Emissions Ecofys (2011) International comparison of fossil power efficiency
 2. BAT: USC(47.6%), CCGT(59.3%) * Constant value assumed for efficiency of oil-fired thermal power generation due to limited number of newly built plants 	USC efficiency CCGT efficiency	ETP2008
 3. Electricity portfolio of each country (installed capacity for each fossil fuel source 2010 (actual value), 2020, 2030) *Based on actual installed capacity in 2010 and 30-year life, one-third of installed capacity and increased capacity assumed to be replaced by BAT every ten years. *Reductions in fuel input by fuel calculated by assuming replacements with BAT. Reduction potential = reduced amount of fuel input by fuel * CO2 emission coefficient 	Installed capacity (actual value, forecasts) CO2 emission coefficient	WEO2012 Current Policies Scenario, national forecasts, Electric Power Development Plan, etc. IPCC 2006 Guidelines

Domestic and Commercial sector

	Efficiency levels in Air Conditioners (SEER*)				d Demand f thousand ເ	
	2010	2020	2030	2010	2020	2030
Japan	5.20	6.55	7.90	8,242	8,973	10,656
EU	4.10	6.20	8.30	3,232	3,784	3,976
US	4.60	6.45	8.30	6,419	10,082	13,523
China	4.10	5.70	7.30	30,424	54,948	96,078
India	3.60	5.75	7.90	3,363	8,944	19,523
Indonesia	3.60	5.75	7.90	1,493	3,727	7,655
South Africa	3.60	5.75	7.90	153	194	264
Brazil	2.90	5.85	8.80	3,195	7,628	14,486
Russian	3.60	6.90	10.20	1,381	1,449	1,467

* Seasonal Energy Efficiency Ratio

		ptions of Eff nents in Refi (kWh/year)			cted Dema ors (thous	nd for and units)
	2010	2020	2030	2010	2020	2030
Japan	520	390	260	4,585	4,461	4,714
EU	280	200	120	18,611	19,964	21,953
US	580	510	440	9,369	7,211	3,800
China	400	300	200	14,364	20,185	29,733
India	470	355	240	5,550	8,874	14,910
Indonesia	470	355	240	2,511	3,941	6,343
South Africa	540	330	120	413	487	604
Brazil	360	240	120	5,356	8,401	12,651
Russian	540	330	120	3,509	3,562	3,571

Assumed efficiency levels in Lighting (Lm/W)			
Incandescent	15		
CFL	60		
LED	100		

Predicted electricity Demand for Lighting (GWh)					
	2010	2020	2030		
Japan	37.8	21.6	33.3		
EU	104.2	65.7	101.6		
US	179.2	120.4	200.2		
China	63.5	65.7	154.3		
India	19.0	21.7	54.7		
Indonesia	7.5	7.3	17.4		
South Africa	5.0	4.9	10.0		
Brazil	13.4	12.1	24.4		
Russian	16.1	8.2	10.9		

Source:

- (Efficiency levels taken from) Letschert et.al, (2012). "Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies" LBNL-5724E
- (Production in 2010 taken from) The Japan Electrical ManufacturersqAssociation (2013),
 Survey on World Demand for 5 White Goods Items 2005-2011+ 31

Domestic and Commercial sector

	Method of determining BAU
	Outlook of future demand for refrigerators and AC (BAU)
	Demand outlook estimated based on GDP growth rate.
	Outlook of future demand for electricity for lighting (BAU)
	Electricity demand for lighting estimated based on assumption of increase in proportion to GDP growth rate.
	Many countries having discontinued manufacture and sales of incandescent light bulbs, diffusion rate of 75% assumed for CFLs in 2020, and 100%, in 2030.
	Assumptions of improved efficiency
	Technology: applied assumptions for efficiency improvements in Letschert et al. (2012)
Assumptions	Assumptions for household appliances
	Based on assumptions for 410L refrigerators and 2.8kW Room ACs
	Refrigerators assumed to operate year-round.
	Room ACs assumed to be used only for cooling purposes. Adjusted operating hours calculated by individually assuming cooling degree days for each country, based on operating hours using Japanese APF.
	Canadian figures used for air conditioning efficiency improvements in the US.
	Assumptions for demand for electricity for lighting use
	Residential electricity consumption for lighting: electricity consumption for lighting estimated from electricity consumption in the residential sector in each country, based on ratio of electricity used for lighting (13.4%) to total electricity consumption in Japan residential sector in 2009.
	The diffusion rate of LED assumed to be 100% in 2050, with a replacement rate of 33% and 55% in 2020 and 2030. respectively.
	EDMC(2013), Handbook of Energy & Economic Statistics in Japan
	²⁷ Association for Electric Home Appliances (2013), Electric Home Appliance Industry Handbook
	⁷⁷ The Japan Electrical ManufacturersqAssociation (2013), Survey on World Demand for 5 White Goods Items
	2005-2011 The Japan Electrical Manufacturerso Association (2013), Report on a Study of Overseas Energy Efficiency
References	Trends for White Goods
	OECD/IEA, Energy Balances of OECD Countries, Non OECD Countries
	OECD/IEA, World Energy Outlook 2013
	[*] Virginie Letschert, Nicholas Bojda, Jing Ke and Michael McNeil (2012). "Estimate of Cost-Effective Potential
	for Minimum Efficiency Performance Standards in 13 Major World Economies" LBNL-5724E 32